Synaptic enhancement induced through callosal pathways in cat association cortex.

نویسندگان

  • Youssouf Cissé
  • Sylvain Crochet
  • Igor Timofeev
  • Mircea Steriade
چکیده

The corpus callosum plays a major role in synchronizing neocortical activities in the two hemispheres. We investigated the changes in callosally elicited excitatory postsynaptic potentials (EPSPs) of neurons from cortical association areas 5 and 7 of cats under barbiturate or ketamine-xylazine anesthesia. Single pulses to callosal pathway evoked control EPSPs; pulse-trains were subsequently applied at different frequencies to homotopic sites in the contralateral cortex, as conditioning stimulation; thereafter, the single pulses were applied again to test changes in synaptic responsiveness by comparing the amplitudes of control and conditioned EPSPs. In 41 of 42 neurons recorded under barbiturate anesthesia, all frequencies of conditioning callosal stimuli induced short-term (5-30 min) enhancement of test EPSPs elicited by single stimuli. Neurons tested with successive conditioning pulse-trains at different frequencies displayed stronger enhancement with high-frequency (40-100 Hz) than with low-frequency (10-20 Hz) rhythmic pulse-trains; >100 Hz, the potentiation saturated. In a neuronal sample, microdialysis of an N-methyl-D-aspartate (NMDA) receptor blocker in barbiturate-treated cats suppressed this potentiation, and potentiation of callosally evoked EPSPs was not detected in neurons recorded under ketamine-xylazine anesthesia, thus indicating that EPSPs' potentiation implicates, at least partially, NMDA receptors. These data suggest that callosal activities occurring within low-frequency and fast-frequency oscillations play a role in cortical synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Electrophysiological properties and input-output organization of callosal neurons in cat association cortex.

Intracellular recordings from association cortical areas 5 and 7 were performed in cats under barbiturate or ketamine-xylazine anesthesia to investigate the activities of different classes of neurons involved in callosal pathways, which were electrophysiologically characterized by depolarizing current steps. Excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs),...

متن کامل

Segregation of Callosal and Association Pathways Development in the Visual Cortex of the Primate

The segregation of callosal and association pathways in the developing visual cortex of the monkey was studied using the retrograde tracers fast blue and diamidino yellow. Quantitative analysis of the laminar distribution of labeled callosal and association neurons made it possible to reveal the shifting pattern of connections that characterizes the development of these two pathways. In the adu...

متن کامل

Large-scale maintenance of dual projections by callosal and frontal cortical projection neurons in adult mice.

Integration of sensory-motor information in premotor cortex of rodents occurs largely through callosal and frontal cortical association projections directed in a hierarchically organized manner. Although most anatomical studies in rodents have been performed in rats, mammalian genetic models have focused on mice, because of their successful manipulation on the genetic and cell biological levels...

متن کامل

Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2004